727 research outputs found

    Decay of fidelity in terms of correlation functions

    Full text link
    We consider, within the algebraic formalism, the time dependence of fidelity for qubits encoded into an open physical system. We relate the decay of fidelity to the evolution of correlation functions and, in the particular case of a Markovian dynamics, to the spectral gap of the generator of the semigroup. The results are applicable to the analysis of models of quantum memories.Comment: 9 pages, no figure

    Short Time Cycles of Purely Quantum Refrigerators

    Full text link
    Four stroke Otto refrigerator cycles with no classical analogue are studied. Extremely short cycle times with respect to the internal time scale of the working medium characterize these refrigerators. Therefore these cycles are termed sudden. The sudden cycles are characterized by the stable limit cycle which is the invariant of the global cycle propagator. During their operation the state of the working medium possesses significant coherence which is not erased in the equilibration segments due to the very short time allocated. This characteristic is reflected in a difference between the energy entropy and the Von Neumann entropy of the working medium. A classification scheme for sudden refrigerators is developed allowing simple approximations for the cooling power and coefficient of performance.Comment: 20 pages, 12 figures. Among the figures there are 6 figures which are double, namely with two parts, Top and Botto

    Information-theoretical meaning of quantum dynamical entropy

    Get PDF
    The theory of noncommutative dynamical entropy and quantum symbolic dynamics for quantum dynamical systems is analised from the point of view of quantum information theory. Using a general quantum dynamical system as a communication channel one can define different classical capacities depending on the character of resources applied for encoding and decoding procedures and on the type of information sources. It is shown that for Bernoulli sources the entanglement-assisted classical capacity, which is the largest one, is bounded from above by the quantum dynamical entropy defined in terms of operational partitions of unity. Stronger results are proved for the particular class of quantum dynamical systems -- quantum Bernoulli shifts. Different classical capacities are exactly computed and the entanglement-assisted one is equal to the dynamical entropy in this case.Comment: 6 page

    Linear dynamical entropy and free-independence for quantized maps on the torus

    Full text link
    We study the relations between the averaged linear entropy production in periodically measured quantum systems and ergodic properties of their classical counterparts. Quantized linear automorphisms of the torus, both classically chaotic and regular ones, are used as examples. Numerical calculations show different entropy production regimes depending on the relation between the Kolmogorov-Sinai entropy and the measurement entropy. The hypothesis of free independence relations between the dynamics and measurement proposed to explain the initial constant and maximal entropy production is tested numerically for those models.Comment: 7 pages, 5 figure
    • …
    corecore